
1

Functionality and Design of the CMock
framework

Simon Raffeiner
Leitwerk AG, Appenweier

Baden-Württemberg, Germany
sraffeiner@leitwerk.de, sraffeiner@stud.fh-offenburg.de

Abstract—Development cycles in the embedded world
have not changed fundamentally for many years now.
Even though the principles of agility, test-driven devel-
opment and extreme programming have been adapted
to embedded development by James Grenning [Gre02],
Micah Dowty [Dow04], Michael J. Karlesky [KBE06]
and others in the last ten years, the advantages of unit
testing and mocking are widely ignored. The problem
mainly arises from the misconception among developers
that code written for embedded platforms without an
operating system is hard to test because of the missing
interaction possibilities with the system, and that space
constraints make the use of frameworks impossible. Most
developers focus on system testing instead. This paper
shows how the CMock1 mocking framework can be used
in conjunction with the Unity2 unit test framework to im-
plement White-Box-Tests for embedded system software
written in the C programming language.

I. INTRODUCTION

It is assumed that the reader is familiar with
the terms “white-box testing” and “unit testing” in
regards to software development.
Section 2 describes the fundamental problems devel-
opers are faced with when testing embedded systems.
Section 3 gives a brief history of the CMock frame-
work. Sections 4 describe the functionality, section
5 focuses on the internal design and integration
with Unity. Section 6 gives general usage instruc-
tion, Section 7 showcases integration into existing
build systems. Section 8 analyzes resource usage on
different platforms (embedded and PC). The paper
concludes with section 8, a brief overview of the
limitations and an outlook into the future.

II. TESTING EMBEDDED SYSTEMS

Embedded systems are fundamentally different
from Personal Computers in regard to available mem-
ory, processing speed and accessibility for debugging
purposes. If unit testing is to be used one a large
scale - preferably for all non-trivial functionality in

1http://cmock.sourceforge.net
2http://embunity.sourceforge.net

every non-trivial module - the execution of tests
must be tightly integrated into the tool-chain, run as
fast as possible and deliver results that are as close
as possible to the finally released system. Common
solutions are found in the following list:

• A development board with a debugging interface
that allows the automated download and execu-
tion of test binaries. Results are then transmitted
to the host via an adequate interface (e.g. RS-
232) or written to a fixed memory location
which is read back via the debugging interface.
This method is the slowest, but also the most
accurate one when peripheral devices (timers,
counters etc.) have to be tested.

• An emulator on the development host. This
method is usually much faster than using a
development board, but the emulator has to
be scriptable and offer a debugging interface
(which not all do). Most emulators are also not
able to emulate peripheral devices at all or the
emulation is not completely accurate.

• Cross-compiled tests for the development host
architecture which are then executed locally. De-
velopers have to pay attention to use compatible
data types on both platforms (e.g. a standard
integer in C has different sizes on different
architectures). This method is the fastest and
easiest one, but is not able to test peripheral de-
vices or run native assembly code. Results may
not be the same as when run on “real” hardware.
Cross-compiling can however be used to eas-
ily detect errors in architecture- and hardware-
agnostic decision logic.

The primary difference between embedded
systems and workstations with complex graphical
user interfaces is the absence of a separate
presentation layer (View): Most embedded systems
do not require user interaction, and if they do
offer input and output through switches, sensors,
LEDs, LCDs etc. signals are usually handled like any
other form of I/O - directly through hardware drivers.

2

Fig. 1. Components in the Model-Conductor-Hardware pattern

[KBE06] introduces the “Model-Conductor-
Hardware” (MCH) pattern for embedded systems
development. It is basically an adaption of the well-
known “Model-View-Controller” [BM00] pattern
for systems without a dedicated user interface
layer. MCH dictates that to get the most out of
unit tests all software has to be split up into
loosely coupled modules and each module is only
allowed to consist of sub-modules implementing a
single type of functionality: interface the hardware
(Driver/Hardware), store data (Model) or realize
decision logic (Conductor/Controller). Modules
and sub-modules communicate through interfaces
(in C terms “methods” listed in common header
files), once an interface is established all code
is written against this specification. This greatly
enhances testability and re-usability as modules can
be replaced and re-used as long as they fulfill the
interface.
Because loose coupling would be senseless if unit
tests then relied on the inner workings of specific
modules mocking is used. Instead of handing full-
blown instances of every needed module to a module
under test only a minimal implementation fulfilling
the interface is provided, decoupling the unit test
from the need for a real implementation. Those
“fake” modules can be generated automatically
from the interface description (the header file),
the expected behavior of the interface methods is
simulated by “training” them with known values.
It has been proven that the usage of modules with
well-defined interfaces improves overall code quality
and enhances re-usability for other projects. [BM00]
also shows that the concept comes with little to no
overhead if an optimizing C compiler is used.

III. HISTORY

The basics of CMock have been developed by
Atomic Objects, LLC3 during a project for Sa-
vant Automation4 [FBKW07], a major US-American
manufacturer of automated guided vehicles.

3http://www.atomicobject.com
4http://www.savantautomation.com

Savant hired Atomic Objects in late 2005 to rewrite
the firmware for two ARM95-based electronic boards
used inside the vehicles. Relying on an agile6 de-
velopment process, the team found itself in need
of an embedded development tool-chain offering all
functionality they had been used to when developing
desktop or web applications, but at the same time
fitting into a Microchip PIC7 microcontroller with
just 256 bytes of RAM and 32 kilobytes of ROM.
Atomic object successfully completed the project,
adapting all agile development principles (unit test-
ing, mocking and system tests) to the embedded
environment and introducing new strategies (e.g. the
Model-Conductor-Hardware pattern [KBE06]), spe-
cial system test hardware and custom-written frame-
works (namely Argent, Unity and CMock).
While it took the team nine months to finish the
firmware for the first board, the second board (of
comparable complexity) was completed in just four
months by further tweaking the development process.
Two parts of the tool-chain, the unit test framework
Unity and the mock framework CMock, were re-
leased as open-source projects to the public alongside
a presentation [WV08] at the Embedded Systems
Conference Boston in October 2008. Atomic Object
employees Greg Williams, Michael Karlesky and
Mark VanderVoord have since continued to improve
both tool-kits and updated the package version from
1.0 to 1.2.2.

IV. FUNCTIONALITY

The CMock framework consists of a series of
scripts written in the Ruby8 scripting language and
generates mock object code from C Header files
containing function prototypes. All mocking code is
output as standard C code.
CMock aims at mock testing only and therefore
offers no unit testing functionality, which usually
requires developers to use an additional unit testing
facility. The framework comes with generator mod-
ules for Unity- or CException-style9 methods.

A. Distribution

This paper relies on CMock in version 1.2.2 re-
leased in late 2008. The distribution obtained from
the website contains the following directories:

• config Configuration files

5http://www.arm.com, the dominant processor architecture in
mobile applications

6http://www.agilealliance.org
7http://www.microchip.com
8http://www.ruby.org, an object-oriented scripting language
9http://apps.sourceforge.net/mediawiki/cexception/, a simple

exception handling mechanism written in ANSI C

3

Fig. 2. Data flow inside CMock

• docs Documentation
• examples Example code
• iar Files specific to IAR Systems’ Embedded

Workbench Compiler for ARM architectures
• lib The actual framework
• test Unit tests for CMock itself
• vendor Needed additional libraries for the Unit

tests
When CMock is included into a tool-chain the

Ruby scripts from the lib/ sub-directory and the Unity
framework from the vendor/ directory are necessary.

V. INTERNAL DESIGN

CMock follows the internal workings of every
mock framework: offer some functionality to express
how often, with which parameters and yielding which
return value a method shall be called, store the
information internally and fake the relevant method.
If all values are inside specifications return the given
value, if not fail.
Because the C language does not offer code manipu-
lation at run-time (unlike Java and .NET) and CMock
is targeted at embedded systems all code has to be
generated before compilation. Mocks are generated
in three steps (also see Figure 2):

• The parsing layer parses all header files and
extracts information

• Extracted information is passed to the generator
layer, which generates mock code using plug-ins

• The file writer layer updates or generates the
necessary header and source files

Figure 3 shows the dependencies between the
internal CMock modules. Two additional modules
store global configuration options (config) and
provide a list of pre-generated C template methods
to the generator (generator utils).

A. The parsing layer

The parsing layer consists of a single file,
cmock header parser.rb. It parses a C header file and
outputs the following information as a Ruby Hash
structure in CMock-internal format:

• Included header files (may define new data
types)

• External variables
• Function names, modifiers (e.g. static), return

data types, argument names and data types
Figure 4 shows an example header file for a

temperature filter module (obtained from the CMock
distribution), Figure 5 the extracted information in
its internal data structure.

Currently the parser works by first removing every
line of input that does not contain needed informa-
tion (comments, pre-processor directives, typedefs,
defines etc.). It then continues to search for included
header files and external variables and removes
matching lines as well. Finally, all remaining lines
are checked for prototype declarations and all names
and data types extracted.
Matching and parsing is currently performed via
regular expressions. Processing seems quite stable,
but a proper C parser could improve quality and
stability. As the parsing layer does not use any
form of plug-in mechanism the usage of CMock for
programming languages other than C would only be
possible by replacing the current parser.

B. The generator layer

Mock code generation is split between
the basic generator code in the file
cmock generator.rb and a list of generator modules
(cmock generator *.rb) managed by the plugin
manager (cmock plugin manager.rb).
The basic code handles the following tasks:

• Communication with the parsing layer (using
the internal Hash structure)

• Communication with the file writer layer
• Generation of the mock header file including all

needed external includes and external variables

4

Fig. 3. Internal Dependencies between modules

1 #ifndef _TEMPERATUREFILTER_H
2 #define _TEMPERATUREFILTER_H
3 #include "Types.h"
4

5 void TemperatureFilter_Init(void);
6 float TemperatureFilter_GetTemperatureInCelcius(void);
7 float TemperatureFilter_ProcessInput(float temperature);
8 #endif // _TEMPERATUREFILTER_H

Fig. 4. TemperatureCalculator.h: Example Header file for a temperature filter module

• Generation of the global * Init(), * Destroy()
and * Verify() methods

• Generation of the mock instance structure
The generation of the mock methods is realized

by plug-ins to allow better integration with unit test
frameworks. Figure 6 shows the generated mock
header file for the temperature filter, Figure 7 the
generated mock instance object. The mock functions
themselves are not included in the mock header file
but are defined by including the original header file,
in this case “TemperatureFilter.h”.
The mock instance object is the core data structure
of every mock. It stores the following information:

• allocFailure, the total count of memory alloca-
tion errors (if any)

• * Return CallCount (actual number of calls)
and * Return CallsExpected (number of ex-
pected calls) for every mock method

• * Return (next), Return Head (start) and Re-

turn HeadTail (end), pointers into an array con-
taining all registered return values for a mocked
method

• * $variable (next), * $variable Head (start),
* $variable HeadTail (end), pointers into an ar-
ray containing all expected values for a specific
variable of a mocked method

The generated methods take care of the mock
instance data structure. * Init() resets all counters
and arrays, * Destroy() frees all memory allocated
for arrays, * Verify() compares call counter values
to the expected count using methods provided by the
used unit test framework.

Expect(parameters) and * ExpectAndReturn (pa-
rameters, return) work like in any other mocking
framework: they increase the expected call count,
store the expected arguments into the mock instance
structure and, in case of * ExpectAndReturn(), add
the expected return value to the proper array.

5

1 {:includes=>["Types.h"], :externs=>[], :functions=>[{:modifier=>"", :
rettype=>"void", :args=>[], :var_arg=>nil, :name=>"
TemperatureFilter_Init", :args_string=>"void"}, {:modifier=>"", :
rettype=>"float", :args=>[], :var_arg=>nil, :name=>"
TemperatureFilter_GetTemperatureInCelcius", :args_string=>"void"}, {:
modifier=>"", :rettype=>"float", :args=>[{:type=>"float", :name=>"
temperature"}], :var_arg=>nil, :name=>"TemperatureFilter_ProcessInput"
, :args_string=>"float temperature"}]}

Fig. 5. Generated internal Ruby Hash structure

1 #ifndef _MOCKTEMPERATUREFILTER_H
2 #define _MOCKTEMPERATUREFILTER_H
3 #include "TemperatureFilter.h"
4

5 void MockTemperatureFilter_Init(void);
6 void MockTemperatureFilter_Destroy(void);
7 void MockTemperatureFilter_Verify(void);
8

9 void TemperatureFilter_Init_Expect(void);
10 void TemperatureFilter_GetTemperatureInCelcius_ExpectAndReturn(float

toReturn);
11 void TemperatureFilter_ProcessInput_ExpectAndReturn(float temperature,

float toReturn);
12 #endif

Fig. 6. MockTemperatureCalculator.h: Generated mock header file

1 static struct MockTemperatureFilterInstance
2 {
3 unsigned char allocFailure;
4 unsigned short TemperatureFilter_Init_CallCount;
5 unsigned short TemperatureFilter_Init_CallsExpected;
6 unsigned short TemperatureFilter_GetTemperatureInCelcius_CallCount;
7 unsigned short TemperatureFilter_GetTemperatureInCelcius_CallsExpected;
8 float *TemperatureFilter_GetTemperatureInCelcius_Return;
9 float *TemperatureFilter_GetTemperatureInCelcius_Return_Head;

10 float *TemperatureFilter_GetTemperatureInCelcius_Return_HeadTail;
11 unsigned short TemperatureFilter_ProcessInput_CallCount;
12 unsigned short TemperatureFilter_ProcessInput_CallsExpected;
13 float *TemperatureFilter_ProcessInput_Return;
14 float *TemperatureFilter_ProcessInput_Return_Head;
15 float *TemperatureFilter_ProcessInput_Return_HeadTail;
16 float *TemperatureFilter_ProcessInput_Expected_temperature;
17 float *TemperatureFilter_ProcessInput_Expected_temperature_Head;
18 float *TemperatureFilter_ProcessInput_Expected_temperature_HeadTail;
19 } Mock;

Fig. 7. Excerpt from MockTemperatureCalculator.c: Generated mock instance object

1 void testGetFormattedTemperature(void)
2 {
3 TemperatureFilter_GetTemperatureInCelcius_ExpectAndReturn(25.0f);
4 TEST_ASSERT_EQUAL_STRING("25.0 C\n", UsartModel_GetFormattedTemperature

());
5

6 TemperatureFilter_GetTemperatureInCelcius_ExpectAndReturn(-INFINITY);
7 TEST_ASSERT_EQUAL_STRING("Temperature sensor failure!\n",

UsartModel_GetFormattedTemperature());
8 }

Fig. 8. Usage of mocked modules with Unity

6

The generated mock methods compare the actual
parameters to the expected parameters, maintain the
internal data structures (e.g. increasing all pointers
for the next call) and finally return an eventual value.
If the whole call was unexpected or a parameter
has an unregistered value the method fails using the
methods offered by the unit test framework.
It should be noted that it is the responsibility of the
tool-chain to correctly link test drivers and mock
code together. Mocked methods have exactly the
same signature as their corresponding “real” meth-
ods, if both are linked into a binary the linker is
likely to complain about duplicate symbols.

C. The file writer layer
The file writer layer offers very limited func-

tionality: Write output into a temporary file and
overwrite/create a file with the given file name in a
directory specified by configuration. As there is little
complexity in this layer the reader is redirected to
the cmock file writer.rb file for further analysis.

D. Integration with Unity
CMock is tightly integrated with the Unity

framework. Although code generation should be
framework-agnostic through the usage of plug-ins,
it is not. Parts of the code are always automatically
generated using Unity-style assertions.

Figure 8 gives an example on how a Model-
Conductor-Hardware test driver method may use the
generated temperature filter mock: The Usart module
in its entirety communicates status information to
a display unit. The Usart model inside the module
gathers needed data and formats it according to
specific rules. The test instructs the mock to return
given values, in this case 25 and -INFINITY degrees
(representing a sensor failure), and checks the re-
sulting strings using Unity assertions. The tool-chain
is responsible for linking the mock code against the
test driver instead of the real code, the Usart model
functions will not notice any difference and work
with the mock.

VI. USAGE

CMock will usually be included into some form
of tool-chain and/or build system to automatically
generate mock objects. It offers two different modes
of operation: the cmock.rb script can be run through
the Ruby interpreter on the command line, but it also
exposes a class and some methods to generate mocks
when included into other Ruby scripts. Both modes
are equal in functionality, internally the command
line mode just creates an instance of the class and
executes the needed methods.

1 ruby lib/cmock.rb -oconfig.yml src/
uart.h src/sensor.h

Fig. 9. Running CMock from the command line

1 cmock = CMock.new(options)
2 cmock.setup_mocks(list)
3 cmock.generate_mock(source)

Fig. 10. Ruby functions offered by CMock

A. Mocking from the command line

When executed directly from the command line all
parameters are expected to be path-names to C header
files or an optional configuration file. CMock will
then iterate through all file names and generate mock
code. Figure 9 gives an example on how CMock may
be run from the command line.

Configuration files are expected to be written in
YAML10 format. A full list of currently supported
configuration options may be found in the project
documentation.
If no configuration file is specified the defaults are
used, which at this moment activates the cexception
and ignore plug-ins and places all generated mock
code into a sub-directory called mocks/.

B. Mocking from Ruby scripts or via Rake

CMock may be incorporated as a native Ruby
object as shown in Figure 10. It only offers a
constructor and two simple methods.

The constructor accepts the same options as the
ones specified in a YAML file when running CMock
from the command line. If nothing is specified the
defaults are used. setup_mocks() generates mock
objects for a list of input files, generate_mock()
for a single file.
The cmock.rb file just instantiates a CMock ob-
ject and passes all command line parameters to the
setup_mocks() method, it is therefore very easy
to include CMock into an existing tool-chain if it
already uses Ruby scripts or the Rake11 build system.

VII. INTEGRATION INTO EXISTING PROJECTS

The CMock distribution and examples rely on the
Rake build system, but integration into pre-existing
build systems is quite simple: Create an additional
build target that calls on Ruby and cmock.rb to
generate the mocks before actual compilation

10http://www.yaml.org/, YAML Ain’t Markup Language, a
human-friendly data serialization standard

11http://rake.rubyforge.org/, drop-in replacement for make

7

1 cmock:
2 mock_path: ’mocks/’
3 includes:
4 - ’Types.h’
5 plugins:
6 - ’ignore’

Fig. 11. An example YAML configuration

happens. The wiki gives an example12 on integration
into the popular Eclipse IDE13.

Most projects will have a source tree with pre-
existing folder structure and at least in the beginning
the few test drivers and mocks usually “live” in one
folder with “normal” source files. This is not the
best option, as IDEs with extended functionality like
indexing and code completion will initially fail -
suddenly many methods appear as duplicates (once
for the mock and once for the original source file)
and additional auto-generated mock methods (Init(),
Destroy(), * Expect() etc.) start appearing. It may
be possible to exclude single files from indexing but
it this process is error-prone and generates much
more problems than simply putting mocks, source
files and tests into different folders right from the
beginning. In this case all unwanted folders just
have to be removed from the indexer once.

All CMock parameters, including the output
path for mock files, are easily configurable through
the usage of YAML files. An example is shown in
figure 11: It tells the generator layer to include a
needed header file, Types.h, into all mock code, and
load the “ignore” plug-in. The file writer layer is
advised to put all generated files into the “mocks”
sub-folder of the current working directory.

A complex build setup may require multiple
YAML files containing different options and paths.

VIII. RESOURCE USAGE

Most embedded systems are limited in code stor-
age (internal/external Flash or EEPROM) and espe-
cially memory (internal/external RAM). If unit tests
are to be run in-situ or in an emulator their space
consumption should be as low as possible so many
tests can be run out of a single binary, speeding up
the process and reducing the number of build targets.
The first column in Table 12 compares the total
code size of all mock methods generated for the

12http://sourceforge.net/apps/trac/cmock/wiki/EclipseIde,
Eclipse IDE Integration

13Integrated Development Environment

Code Instance
Atmel AVR (Atmega8) 1664 31

Atmel AVR (Atmega32) 1714 31
Intel 8051 1681 31
Intel i386 1775 60

AMD x86 64 1804 104

Fig. 12. CMock resource usage

temperature filter example introduced in Figure 4,
compiled on different platforms. The second column
compares the size of the generated mock instance
object on the same platforms, respectively. These
numbers do not change at run-time.
What changes however is the memory space needed
for expected arguments and return values: Every
call to * Expect(parameters) or * ExpectandReturn
(parameters, return) increases memory usage at run-
time. The exact numbers are subject to the size of
exact data types and the number of values to store.
Also the specific implementation of malloc() on the
given platform may not be able to use every single
byte of memory but rather allocate aligned blocks.
Compilers used: avr-gcc 4.3.2 for Atmel AVR, SDCC
2.8.0 #5117 for Intel 8051, GCC 4.3.3 for Intel
i386, GCC 4.3.3 for AMD x86 64. All compilers
have been instructed to produce the smallest possible
binary via the according command line flags.

As the table shows generated code size is very
similar when compared between platforms, but
the impact can be dramatic when compared to the
limitations of a specific device: The Atmega8 e.g.
offers only 8 kilobytes flash storage and 1 kilobyte of
RAM. This is enough for projects of a considerable
size (people have built complete MP3 players using
it), but we could probably just fit two or three mocks
into its memory - the rest is needed for the actual
unit tests and other subsystems (host communication
etc.). Some members of the Intel 8051 family come
with only 128 or 256 bytes of RAM, mocks may
be useless on such a platform because there is not
enough memory to store expected parameters and
return values (depending on the rest of the test
setup).
The situation is however considerably better on the
Atmega32 (32 kilobytes flash, 2 kilobytes RAM)
and many other platforms (ARM, MIPS, ColdFire
etc.). Intel i386 and AMD x86 64 architectures
are mainly listed as examples for cross-unit testing
on a development host machine where resource
limitations are usually not an issue.

8

IX. LIMITATIONS AND CONCLUSION

It has been proven that CMock offers the basic
functionality needed to mock standard C methods.
There are however some unresolved issues that may
lower its usability for embedded system develop-
ment.
CMock makes heavy usage of the malloc(), realloc()
and free() standard library calls. Not every run-
time environment offers memory management, some
embedded coding style policies may even prohibit the
usage of malloc.h - in test code and in cross-compiled
code for development workstations as well. Currently
there is no solution for this problem.
CMock is heavily tied to the Unity unit test frame-
work released by the same company and the Rake
build system. Although code generation should be
fully handled by plug-ins parts of the generated mock
code will always rely on Unity methods for assertions
and failures. Integration with existing development
tool-chains may be impossible under this circum-
stances.
The CMock framework is a very young project and
has been actively developed since its release. The
Subversion code repository on sourceforge.net shows
constant activity. Time will tell if CMock has the
potential to become a worthy addition for embedded
tool-chains or if the developers focus too much on
their own needs and the strong dependencies on
Unity and Rake pose a threat to its success.
As there is currently no hype about unit testing and
mocking in the embedded world it may take some
time until enough developers from other projects
have evaluated CMock for their needs.

REFERENCES

[BM00] Andy Bower and Blair McGlashan, editors. Twisting
The Triad - The evolution of the Dolphin Smalltalk
MVP application framework. ESUG 2000 Interna-
tional Smalltalk Conference, 2000.

[Dow04] Micah Dowty. Test driven development of embed-
ded systems. University of Colorado at Boulder,
March 2004.

[FBKW07] Matt Flettcher, William Bereza, Mike Karlesky, and
Greg Williams, editors. Evolving into Embedded
Development. Agile 2007 Conference, August 2007.

[Gre02] James W. Grenning, editor. XP and Embedded
Systems development. Object Mentor Inc., 5101
Washington Street, Suite 1108, Gurnee, IL 60031
USA, 1 edition, March 2002.

[KBE06] Michael J. Karlesky, William I. Bereza, and Carl B.
Erickson, editors. Effective Test Driven Develop-
ment for Embedded Software. IEEE Electro/Infor-
mation Technology Conference, 2006.

[WV08] Greg Williams and Mark VanderVoord, editors.
Embedded Feature Driven Design Using TDD
and Mocks. Embedded Systems Conference Boston
2008, October 2008.

